a preprocessing stage before the feature extraction procedure in classification of hyperspectral images data

نویسندگان

بهرام صالحی

محمدجواد ولدان زوج

محمدرضا سراجیان

چکیده

hyperspectral data potentially contain more information than multispectral data because of their higher spectral resolution. however, the stochastic data analysis approaches that have been successfully applied to multispectral data are not as effective for hyperspectral data as well. various investigations indicate that the key problem that causes poor performance in the stochastic approaches to hyperspectral data classification is inaccurate class parameters estimation. it has been found that the conventional approaches can be retained if a preprocessing stage is established before feature extraction procedure in classification of hyperspectral data. for preprocessing stage it has been proposed two steps in this paper including dimensionality reduction and class separability improvement. sequential parametric projection pursuit was used for dimensionality reduction because of its special characteristics. projection pursuit algorithm performs the computation of class parameter estimation at a lower dimensional space, giving better parameter estimation. for class separability improvement a lowpass filter has been used after dimensionality reduction. this paper shows that for different number of features, classification accuracy is improved when the preprocessing stage is applied.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the clustering and classification data mining techniques in insurance fraud detection:the case of iranian car insurance

با توجه به گسترش روز افزون تقلب در حوزه بیمه به خصوص در بخش بیمه اتومبیل و تبعات منفی آن برای شرکت های بیمه، به کارگیری روش های مناسب و کارآمد به منظور شناسایی و کشف تقلب در این حوزه امری ضروری است. درک الگوی موجود در داده های مربوط به مطالبات گزارش شده گذشته می تواند در کشف واقعی یا غیرواقعی بودن ادعای خسارت، مفید باشد. یکی از متداول ترین و پرکاربردترین راه های کشف الگوی داده ها استفاده از ر...

Best-bases feature extraction algorithms for classification of hyperspectral data

Due to advances in sensor technology, it is now possible to acquire hyperspectral data simultaneously in hundreds of bands. Algorithms that both reduce the dimensionality of the data sets and handle highly correlated bands are required to exploit the information in these data sets effectively. We propose a set of best-bases feature extraction algorithms that are simple, fast, and highly effecti...

متن کامل

data mining rules and classification methods in insurance: the case of collision insurance

assigning premium to the insurance contract in iran mostly has based on some old rules have been authorized by government, in such a situation predicting premium by analyzing database and it’s characteristics will be definitely such a big mistake. therefore the most beneficial information one can gathered from these data is the amount of loss happens during one contract to predicting insurance ...

15 صفحه اول

Feature extraction of hyperspectral images using boundary semi-labeled samples and hybrid criterion

Feature extraction is a very important preprocessing step for classification of hyperspectral images. The linear discriminant analysis (LDA) method fails to work in small sample size situations. Moreover, LDA has poor efficiency for non-Gaussian data. LDA is optimized by a global criterion. Thus, it is not sufficiently flexible to cope with the multi-modal distributed data. We propose a new fea...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
نشریه دانشکده فنی

جلد ۴۲، شماره ۳، صفحات ۰-۰

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023